Deformation quantization on the cotangent bundle of a Lie group

نویسندگان

چکیده

We develop a complete theory of non-formal deformation quantization on the cotangent bundle weakly exponential Lie group. An appropriate integral formula for star-product is introduced together with suitable space functions which well defined. This becomes Fréchet algebra as pre-C*-algebra. Basic properties are proved, and extension to Hilbert an distributions given. A C*-algebra observables states constructed. Moreover, operator representation in position presented. Finally, examples groups

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the BKS Pairing for Kähler Quantizations of the Cotangent Bundle of a Lie Group

A natural one-parameter family of Kähler quantizations of the cotangent bundle T ∗K of a compact Lie group K, taking into account the half-form correction, was studied in [FMMN]. In the present paper, it is shown that the associated Blattner-Kostant-Sternberg (BKS) pairing map is unitary and coincides with the parallel transport of the quantum connection introduced in our previous work, from th...

متن کامل

Equivariant Deformation Quantization for the Cotangent Bundle of a Flag Manifold

Let XR be a (generalized) flag manifold of a non-compact real semisimple Lie group GR, where XR and GR have complexifications X and G. We investigate the problem of constructing a graded star product on Pol(T ∗XR) which corresponds to a GR-equivariant quantization of symbols into smooth differential operators acting on half-densities on XR. We show that any solution is algebraic in that it rest...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Extensions of Lie-Rinehart algebras and cotangent bundle reduction

Let Q be a smooth manifold acted upon smoothly by a Lie group G, and let N be the space of G-orbits. The G-action lifts to an action on the total space T∗Q of the cotangent bundle of Q and hence on the ordinary symplectic Poisson algebra of smooth functions on T∗Q, and the Poisson algebra of G-invariant functions on T∗Q yields a Poisson structure on the space (T∗Q) / G of G-orbits. We develop a...

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2021

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/1.5113812